Using Machine Learning & Deep Learning With ArcGIS Imagery

KANNAN Jayaraman gistec

SEE

WHAT

CAN'T

OTHERS

SEE WHAT OTHERS CAN'T

ArcGIS as a Platform for Deep Learning

ArcGIS is a Comprehensive Imagery Platform

Analysis

Extracting Information from Imagery ArcGIS Pro Core capabilities Raster Functions

> ArcGIS Spatial Analyst Raster Functions Distance modelling Hydrological modelling

ArcGIS Image Analyst Raster Functions Deep Learning Pixel Editor Multidimensional data Stereo Image Space Full Motion Video

ArcGIS Image Server Raster Functions Scaling using Raster Analytics

ArcGIS API for Python

SEE WHAT OTHERS CAN'T

Artificial Intelligence

gisworx

Recent Innovation

Artificial Intelligence

• Al is the ability of computers to perform a task that typically requires some level of human intelligence.

Machine Learning

• Type of engine that uses data driven algorithms to learn from data to give users the answers that's required.

Deep Learning

• Type of machine learning, and it refers to deep neural networks, that are inspired from and loosely resemble the human brain

(Object Detection			
Object Tracking Natural Language Processing		T-SNE Su	Ipport Vector N	<i>Machines</i>
		Machine Neural Netw		ral Networks
Cognitive		Learning	Comput	er Vision
Computing	CNTK	Keras	Dimensionality Reduction	
GeoAl		Deep Learning	Те	nsorFlow

ArcGIS Includes Machine Learning Tools

Classification

Machine Learning Tools in ArcGIS

Classification

- Pixel & Object Based
- Image Segmentation
- Maximum Likelihood
- Random Trees
- Support Vector Machine

Deep Learning

- Generate training samples
- Detect objects
- Classify pixels

Clustering

- Spatially Constrained Multivariate
 Clustering
- Multivariate Clustering
- Density-based Clustering
- Hot Spot Analysis
- Cluster and Outlier Analysis
- Space Time Pattern Mining

Prediction

- Empirical Bayesian Kriging
- Areal Interpolation
- EBK Regression Prediction
- Ordinary Least Squares Regression and Exploratory Regression
- Geographically Weighted Regression

gisworx

Deep Learning with Imagery in ArcGIS

ArcGIS supports end-to-end deep learning workflows

- Tools for:
 - Labeling training samples
 - Preparing data to train models
 - Training Models
 - Running Inferencing
- Supports all 4 imagery deep learning categories
- Supports image space, leverage GPU
- Clients
 - ArcGIS Pro
 - Map Viewer
 - Notebooks

Part of ArcGIS Image Analyst Run distributed on ArcGIS Image Server

Deep Learning

Key imagery tasks for deep learning

Impervious Surface Classification

Palm Tree Detection

Pixel Classification

Object Detection

Building Footprint Extraction

Instance Segmentation

ArcGIS Deep Learning Workflow

ArcGIS – Machine Learning Workflow

Deep Learning Process

Sample UAV Data

Image as viewed in ArcGIS Pro

Density of Sample collection

Initial Process Samples

Samples as Image Chips

SAMPLE IMAGE CHIP CREATION

Samples at multiple locations

Samples exported for Deep Learning

€ Export Training Data	For Deep Learn 🕂	
Parameters Environments	?	
Input Raster		
Kolovai Palms	- 🧰	
Output Folder		
ImageChips		
Input Feature Class Or Class	ified Raster	
PalmTraining	• 🧰	
Class Value Field		
Classvalue	•	
Buffer Radius	0	
Image Format		
JPEG format	-	
Tile Size X	448	
Tile Size Y	448	
Stride X	128	
Stride Y	128	
Output No Feature Tiles		
Meta Data Format		
PASCAL Visual Object Class	ses 🔻	
Start Index	0	
	Run 🕟	gisworx

Support for Deep Learning out of the box

	Detect Objects	Classify Pixels
Tensor Flow	Object Detection API	DeepLabs
Keras	Mask RCNN	
PyTorch	fast.ai - SSD	
CNTK	Faster RCNN by Microsoft	U-Net by Microsoft Azure

Tensor Flow: end-to-end open source platform for machine learning

Keras: Open-source neural-network library written in Python. Capable of running on top of TensorFlow, CNTK and other platform PyTorch: Open source machine learning library used for computer vision and natural language processing, primarily developed by FB AI Research Lab CNTK: Microsoft Cognitive Toolkit, previously known as CNTK - a deep learning framework developed by Microsoft Research

Inference Tools

Classify Pixels using Deep Learning

Runs the model on an input raster to produce classified raster, each valid pixel has an assigned class label

- Built in Python Raster Function for TensorFlow and CNTK
- Mini-batch support
- Processor type: CPU or GPU
- Parallel Processing in ArcGIS Pro
- Distributed raster analysis on Enterprise

eoprocessing	тц×	
€ Classify Pixels Usi	\oplus	
Parameters Environments		?
Input Raster		
5b1b6fb2-5024-4681-a175-9b667	-	
Output Classified Raster		
c5b1b6fb250244681a1759b66717		
Model Definition		
C:\DeepLearning\Data\Coconut		
Arguments		
Name	Value	
padding	0	
threshold	0.5	
nms_overlap	0.1	
batch_size	64	

Run (

Sample Use Case

Landcover Classification

Inference Tools

Detect Objects Using Deep Learning

Runs the model on an input raster to produce feature class containing the object it finds

- Built in Python Raster Function for TensorFlow, Keras, PyTorch and CNTK
- Mini-batch support
- Optional: Non-Maximum Suppression
- Processor type: CPU or GPU
- Parallel Processing in ArcGIS Pro
- Distributed raster analysis on Enterprise

Non Maximum Suppression (Optional)

Performs non-maximum suppression, where duplicate objects are identified and the duplicate feature with a lower confidence value is removed.

- Unchecked—All objects that are detected will be in the output feature class. This is the default.
- Checked—Removes duplicate objects that are detected.

Geop	processing		т ф
€	Detect Object	ts Using Deep Learning	
Para	meters Environment	s	
Inp	ut Raster		
5b	1b6fb2-5024-4681-a175	-9b667174f48c.tif	• 📄
Out	put Detected Objects		
c5	b1b6fb250244681a1759b	b66717	
Mo	del Definition		
C:\	\DeepLearning\Data\Co	conutTrees.emd	
Arg Nar	uments ne	Value	
	padding	0	
	threshold	0.5	
	nms_overlap	0.1	
	batch_size	64	
1	Non Maximum Suppres	ssion	
Cor	nfidence Score Field		
Co	onfidence		
Clas	ss Value Field		
Cla	ass		
Max	x Overlap Ratio		0
			Run 🜔

Object Detection using Deep Learning – Sample Output

Deep Learning in ArcGIS API for Python

Make model training easier using arcgis.learn module

The arcgis.learn module is based on PyTorch and fast.ai and enables fine-tuning of pretrained torchvision models on satellite imagery

- Prepare Training Data
 - arcgis.learn.prepare_data
- Export Training Data
 - arcgis.learn.export_training_data
- Train Models
 - arcgis.learn.SingleShotDetector
 - arcgis.learn.UnetClassifier
 - arcgis.learn.FeatureClassifier

- Model Management
 - arcgis.learn.list_models
 - arcgis.learn.Model
 - Model.install
 - Model.Uninstall
 - Model.query_info
- Run Inference at SCALE
 - arcgis.learn.detect_objects
 - arcgis.learn.classify_pixels

- Easy way to extend Deep Learning capabilities to any support Framework/Model configuration
- Out of the box Support for most common Deep Learning Frameworks
- Leverage the powerful Raster Analytics capabilities to distribute model inference tasks.
- Users can easily train the model with ArcGIS API for Python

Thank you!

Kannan Jayaraman kannan.jram@gistec.com

